47. Соков, Л.А. Космический конструктор — «конструктор LEGO» (статья) // Вестник семинара «АНИ» : Материалы научного семинара «Альтернативные научные исследования». — Новосибирск, 2014. — № 2 (17). — 94 с. (71-86 с.)

Материалы семинара «Альтернативные научные исследования»

Космический конструктор — «конструктор LEGO» Соков, Л.А., г. Челябинск levsokov@vandex.ru

«Главной целью всех исследований внешнего мира должно быть открытие рационального порядка и гармонии» Иоганн Кеплер

Теорию внеземного происхождения жизни на Земле «аргументированно подтвердили» российские и итальянские астробиологи, собравшиеся 11-12 декабря 2011 года в Дубне. Такой же точки зрения придерживаются некоторые учёные 1-ой Всероссийской научной школы-конференции по астробиологии, состоявшейся в Пущино 16-19 сентября 2012 года.

Аргументация: нашей планете $\sim 4,56$ миллиарда лет. Несколько лет назад во льдах Гренландии были найдены бактерии, которым $\sim 3,8$ млрд. лет. 0,76 млрд. лет слишком малый промежуток времени, значит — жизнь была занесена из космоса (http://cryosol.ru/load/conferences/conference_on_astrobiology2012/2-1-0-38). К аргументам учёные относят невероятную сложность клетки, хиральность молекул, особую пептидную связь,

длительность процесса самоорганизации живого по разным расчётам превышает время существования не только планеты, но и Вселенной и т.д. Вероятность самосборки живой клетки из приготовленных и сложенных «в кучку» необходимых атомов даже в самой благоприятной химической среде составляет 10^{-100} 000

Очень странные числа. Причём главным препятствием возникновения жизни на Земле является время самосборки живого. Незнание механизмов самоорганизации живого на Земле заставляет учёных склоняться к гипотезе панспермии.

Цель работы — изучить «естественные космические технологии»: методы и алгоритмы самоорганизации барионного вещества и оценить возможность и время /скорость/ самосборки живого на Земле.

В практической и теоретической космологии некоторые учёные рассматривают Вселенную как глобальную фрактальную систему (Федосин, С.Г., 2003;2007; 2009; Линде, А.Д., 2007; Baryshev, Y. Teerikorpi, P., 2002; Baryshev, Y., 2008 и т.д.).

Фрактальность возможна только при наличии определённых механизмов, способных производить самоподобные единственный механизм, способный объекты Есть тиражированию самоподобия. Это матрица, матрицирование \rightarrow фракталы (Соков Л.А., 2010; 2012; 2013). Для того чтобы в космосе был задействован матричный механизм космическое пространство должно быть «населено» единым набором информационных единиц материи, снабжённых планом, самосборки. Такими информационными единицами являются элементарные частицы (кварки, лептоны и промежуточные векторные бозоны) и собранное из них барионное вещество, представляющее собой космический электронно - протонно — нейтронный конструктор (КЭПНК). КЭПНК обладает свойствами автопрограммирования и функционирует на базе стохастических (гибких) алгоритмов, возникающих при изменении внешних условий и эволюции его основных элементов (Соков Л.А., 2008). С помощью КЭПНК построены все объекты, состоящие из барионного вещества — химических элементов. Это первичный /базовый/ космический конструктор, имеющий троичный код, и функционирующий по технологии конструктора LEGO.

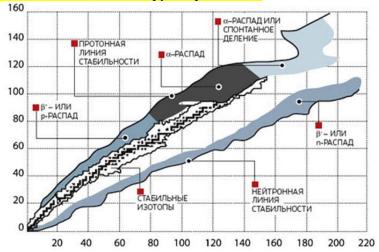


Рис.1. Нейтронно-протонная карта изотопов. Чёрными квадратами представлены ядра стабильные или долгоживущие (Ю.Э. Пенионжкевич, http://nuclphys.sinp.msu.ru/mirrors/exot.htm).

Химические элементы представлены (по разным авторам) 3000-6000 разновидностями изотопов естественных и искусственных (Соков Л.А., 2012). На рисунке 1 по оси ординат – количество протонов, по оси абсцисс – количество нейтронов в ядрах атомов. На поверхности рисунка дана общая характеристика изотопов химических элементов. Это и есть КЭПНК, обладающий невероятными возможностями.

КЭПНК наделён совокупностью программ, методов, механизмов – процессов и материалов, с помощью которых

происходит автоконструирование простых и сложных объектов. Ниже перечислены несколько космических технологических приёмов.

Барионное вещество - химические элементы взаимодействуют между собой с помощью разнообразных химических связей (ионные, ковалентные, донорно-акцепторные, водородные, металлические, ван-дер-ваальсовые способны к образованию химических частиц (атомы, ионы, карбены, эксимеры, ридберги, эксиплексы, молекулярные сэндвичи, ван-дер-ваальсовые молекулы, кластеры, радикалы и др.), с помощью различных механизмов реакций (ионные, молекулярные, нуклеофильные, электрофильные, радикальные, цепные, разветвленно-цепные и т.д.), способны к созданию различных химических состояний (молекулярных, зарядовых, спиновых состояний, различающихся по электронной и ядерной симметрии, и т.д.) (Бучаченко А.Л., 2001). То есть: химические связи – химические частицы – механизмы реакций – химические состояния. Это, в общих чертах, характеристика технологического процесса образования химических частиц и их свойств. Это физико-химический аналог конструктора LEGO.

Кроме химических частиц есть суперчастицы. К ним относятся простые, первичные самовоспроизводящиеся супрамолекулярные устройства и ансамбли, из которых в дальнейшем путем частичного сложения могут возникать и более сложные объекты (Жан-Мари Лен, 1978; 1998; http://chemnet.ru/rus/chemhist/istkhim/supramol.html).

Супрамолекулярную химию можно разделить на две области: 1) супермолекулы; 2) супрамолекулярные ансамбли – плёнка, слой, мембрана, везикула /органелла/, мезоморфная фаза, кристалл и т.д. Супрамолекулярные ансамбли, строятся самопроизвольно из комплементарных, имеющих геометрическое и химическое соответствие фрагментов, подобно самопроизвольной сборке сложнейших пространственных

структур в живой клетке (Супрамолекулярная химия; http://ru.wikipedia.org/wiki/). И это тоже конструктор LEGO.

Идеи конструирования, самосборки клетки впервые были высказаны более столетия назад при появлении и формировании эндосимбиотической теории эволюции. Эндосимбиоз — это взаимовыгодное сосуществование, при котором один из организмов «обитает» внутри другого и функционирует как часть его. Симбиоз, греч. συμ-βίωσις — «совместная жизнь» от συμ- — «совместно» и βίος — «жизнь», эндо — приставка, показывающая отношение к чему-то внутреннему.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина и О. В. Баранецкого о двойственной природе лишайников — симбиотического комплекса гриба и водоросли (1867 год).

К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. А.С. Фаминцин в 1907 году, опираясь на работы А. Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников (http://ru.wikipedia.org/wiki/Симбиогенез).

В 1983 году американская исследовательница Л. Маргелис

В 1983 году американская исследовательница Л. Маргелис (1938-2011) высказала гипотезу, согласно которой митохондрии, выполняющие функции фабрик энергии в эукариотной клетке, — это аэробные бактерии, а хлоропласты растительных клеток, в которых происходит фотосинтез, — цианобактерии, поглощённые, вероятно, около 2 млрд. лет назад примитивными амёбами. В результате взаимовыгодных взаимодействий поглощённые бактерии стали внугренними симбионтами и образовали с поглотившей их клеткой устойчивую систему — эукариотную клетку. Это симбиоз двух разных видов клеток. Ядерные организмы возникли в результате симбиоза двух клеток

(Маргелис, Л., 1983; http://evolution.powernet.ru/library/beginnings.htm/Возникновениежизни на Земле/).

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза c другими (http://gendocs.ru/v3521/?cc=13). Считается, что митохондрии низших растений, высших растений и животных возникали независимо, В результате новых событий (http://www.medbiol.ru/medbiol/molevol/00047fd6.htm).

Итак, митохондрии, пластиды (хлоропласты, хромопласты, лейкопласты), может быть жгутики, реснички и другие органоиды клеток — эукариот, прокариот, архей, могли возникнуть в результате последовательных многочисленных эндосимбиотических событий.

Эндосимбиоз \rightarrow эндосимбиогенез, т.е. самосборка. Это тоже технологии конструктора LEGO.

С помощью этой технологии образуются и эволюционно совершенствуются, вероятно, все органеллы клетки. Органеллы: ядро, ядрышко, рибосома, везикула, шероховатый эндоплазматический ретикулум, митохондрии, лизосома, гиалоплазма, пероксисома, центросома (http://wikipedia.org/wiki/Beзикула/). Самоорганизация первичных органоидов первой протоклетки из супрамолекулярных составляющих и последующих многократных эндосимбиотических событий сокращает время самосборки клетки.

В живом функционирует триплетный генетический код, теоретически вычисленный Г.А. Гамовым (http://physics.kgsu.ru/astronomia/NV/Gamov.htm). Геномы biota планеты в значительной степени (у млекопитающих до 75 %) состоят из остатков чужих геномов ("Лента.ру": разговор с Евгением Куниным об эволюции, случайности и

Мультивселенной http://lenta.ru/articles/ 2012/11/30/koonin/). Перенос фрагментов чужих геномов осуществляется с помощью разнообразных механизмов горизонтального переноса генов: конъюгация (целенаправленная передача ДНК одним организмом другому); трансформация (захват клеткой «чужой» ДНК из внешней среды); трансдукция, перенос в составе вирусов, плазмид, МГЭ /мобильные генетические элементы/; перенос в симбиотических и т.п. системах при физическом контакте клеток; «случайное» включение чужих генов в ходе репарации разрывов ДНК, особенно при нарушении целостности мембраны; половой процесс — слияние гамет + редукционное деление, кроссинговер (Марков А.В., 2008). А ведь это автоконструирование генома блоками, фрагментами, цепочками нуклеотидов, генами по технологии конструктора LEGO.

Итак, троичный код базового КЭПНК и триплетный генетический код живого являются информационной основой строительства (англ. constructor – строитель, дизайнер...) космоса по технологии LEGO.

Для образования только одной молекулы белка /гемоглобина, состоящего из 574 аминокислот/ методом проб и ошибок необходимо время, превышающее протяжённость всей истории человечества с момента образования планеты при вероятности 1: 10950 (http://www.fossilii.ru/makaleler.php?mak=16 МОЛЕКУЛЯРНЫЙ ТУПИК ТЕОРИИ ЭВОЛЮ-ЦИИ). При сборке одной молекулы белка из двух частиц время сокращается как минимум вдвое. При следующем, ещё в два раза и т.д. В этом примере аминокислот 574.

Все аминокислоты сложны. Например, общая структура α -аминокислот, составляющих белки (кроме пролина) следующая: аминогруппа NH_2 , карбоксильная группа COOH, радикал (различается у всех α -аминокислот), в центре молекулы α -атом углерода (http://ru.wikipedia.org/wiki/Amuhokucлotы).

Химические реакции протекают в фемтосекундном временном диапазоне 10^{-15} – 10^{-12} сек. Эти времена гораздо меньше периода колебаний атомов в молекулах 10^{-13} – 10^{-11} сек (Аблесимов Н.Е., 2009; http://elementy.ru/lib/431005). По другим данным химические реакции и физические процессы во внеклеточном (и внутриклеточном) пространстве протекают со скоростью $n \cdot 10^{-4} - 10^{-18}$ сек. (Келина, Н. Ю., Безручко, Н. В., 2006, с. 85; Ленинджер, А., 1974, с.178-195). Элементы d-блока отвечают за формирование и функционирование ферментов, ферментных систем, гормонов, которые увеличивают скорость химических реакций до $n \cdot 10^{-12}$ сек и более (Альберт, А., 1983; Хьюз, М., 1983). Колебания кристаллической решетки, образование и разрыв химических связей происходит за пикосекунду, 10^{-12} сек (http://ru.wikipedia.org/wiki/Время).

образом, очевидно, Таким строительство /автоконструирование/ клетки — это сложный многоэтапный технологический процесс самосборки из более примитивных строительных блоков с помощью гибких стохастических алгоритмов. Это, в том числе физикохимия и супрамолекулярная химия, изучающие сложные образования, представляющие собой ассоциации двух (или более) химических частиц, связанных вместе межмолекулярными силами, с последующим эндосимбиогенезом. В нашем случае, супрамолекулярная химия, нанохимия (кластеры атомов, супермолекулы, размеры которых порядка 10^{-9} м) – часть, раздел (Жан-Мари Лен, http://chemnet.ru/rus/chemhist/istkhim/supramol.html ; Аблесимов H.E., 2009; http://elementy.ru/lib/431005). И это ведь <u>тоже конструктор LEGO.</u>

Планета – планетарный тепловой (и ядерный) реакторсепаратор, конвекце-конвертерная печь участвующие в самоорганизации вторичной активной естественной белковонуклеиновой матрицы из первичной активной суперматрицы барионной материи, с помощью конвекции и преобразующие вещество с помощью конвертерных механизмов. Это природная хорошо оснащённая физико-химическая сеть лабораторий зрелой планеты, с набором инструментов и механизмов, использующая разнообразные законы самоорганизации, которая при определённых условиях может производить сложные органические соединения и, очевидно, живое вещество (Соков Л.А., 2012).

Основные периоды в истории эволюции жизни на Земле.

- 1. 4,56 млрд. лет назад образовалась наша планета, 3,9-4,56 млрд. лет назад появились предбиотические и биотические соединения.
 - 2. 3,8-3,9 млрд. лет назад появились первые клетки.
- 3. 2 млрд. лет назад появились сложноорганизованные клетки.
- 4. 1,2 млрд. лет назад произошёл взрыв эволюции. Кайнозой, 67 млн. лет это время цветковых растений, насекомых, птиц и млекопитающих. (http://evolution.powernet.ru/library/beginning.htm/ Возникновение жизни на Земле/).

Как видно, исходя из вышеизложенного, период от предбиоты до первой клетки по времени значительно короче, чем принято считать. Вероятно, генерирование предбиотических и биотических соединений /1-й период/ на дне и толще дна океанов продолжается и сейчас. Более того, самоорганизация и эволюция живого в недрах нашей планеты происходила, происходит и будет происходить в будущем /2-4-й периоды/.

Технологии конструктора LEGO широко используется в современном производстве. Например, в производстве различных типов самолётов Airbus. Комплектующие одновременно производятся на 16 заводах различных стран /Испания, Великобритания, Германия, Франция.../. Затем

комплектующие /носовая часть, основные части кабины, двигатели, крылья, элементы фюзеляжа и т.п./ с различных заводов транспортируются с помощью специально построенных транспортных самолётов /A300-600ST«Белуга», всего их 5/ на заводы сборки в Тулузу, Франция и Гамбург, Германия (httml).

Идея о том, что из ДНК можно создавать сложные нано структуры, была высказана ещё в начале 1980-х годов американским учёным Надрианом Симаном (Nadrian C.Seeman). В 2006 году специалист по компьютерным наукам Пол Ротмунд (Paul W.K.Rothemund) предложил оригинальную методику под названием «ДНК-оригами» (Paul W. K. Rothemund, 2006). Сборкой ДНК-черепичных структур в теоретическом аспекте занимаются ряд учёных (HaoYanetal., 2003; PengYinetal., 2008; http://www.eternalmind.ru/ index.php?option=com_content&task=view&id=4473).

В ноябрьском номере Science за 2012 год предложена

В ноябрьском номере Science за 2012 год предложена новая методика получения сложных трехмерных структур из ДНК. Сборка ДНК-нано структур с помощью этой методики похожа на строительство моделей с помощью конструктора LEGO. PengYin выпустил новую статью, в которой предложил ещё один вид ДНК-модуля, напоминающий кирпичик из детской игры LEGO (YonggangKe, LuvenaL.Ong, WilliamM. Shih, PengYin, 2012; KurtV. Gothelf., 2012; http://www.eternalmind.ru/index.php?option=com_content&task=view&id=4473).

Естественно эти механизмы (методы оригами, черепицы, LEGO и т.п.) самосборки атомов, молекул, супермолекул реальны и должны работать в природе. Методы автоконструирования могут быть самыми разными. Впервые идея конструирования костного, живого (и клетки и генома) по технологии конструктора LEGO высказана автором текста в 2009-2013 годах. В электронном варианте эта идея зафиксирована в презентациях и монографии «Главная последова-

тельность дифференциации первичного космического вещества...», представленных на сайте автора (http://levsokov.narod.ru) в 2009-2011 годах и в последней монографии автора «Происхождение жизни...», вышедшей в свет в 2012 году.

Уровни космического «LEGO».

- 1. Физический уровень. Сингулярность Большой взрыв. Образование элементарных частиц (кварки, лептоны и промежуточные векторные бозоны) и космического электронно протонно нейтронного конструктора (КЭПНК), оснащённого технологией LEGO.
- 2. Физико-химический уровень самоорганизации изотопов химических элементов барионного вещества (автоконструктор суперматрица, последний термин и идея Щукарева С.А., 1970). Сборка изотопов химических элементов, частиц, супермолекул, супрамолекулярных ассоциаций, блоков, фрагментов...объектов по технологии LEGO.
- 3. Биологический уровень. Уровень жизни. Автоконструирование живого по технологии LEGO.
- а) Формирование в водном солевом растворе вторичной природной активной упорядоченной квантововолновой органической матрицы матрицы протеиноидов (Соков Л.А., 2009).
- b) Оцифровка на вторичной природной активной упорядоченной квантововолновой органической матрице примитивных, простейших цепочек нуклеотидов, блоков, фрагментов, генов, геномов. Строительство нуклеотиднопротеиновой матрицы по технологии LEGO.
- с) Формирование автоконструирование молекул, макромолекул, супермолекул, супрамолекулярных ансамблей плёнка, слой, мембрана, везикула /органеллы живого/ и т. д. и встраивание в первичную протоклетку протогенома. Эндосимбиотическое автоконструирование функциональных самовоспроизводящихся макромолекулярных структур –

органелл, объектов протоклеток протогенома, генома по технологии LEGO.

d) Коэволюционные эндосимбиотические процессы совершенствования и самосборки протоклетки – протогенома → генома – клетки, многоклеточных форм и автоконструирование доменов: эукариоты, бактерии, археи.

Процессы a) b) c) d) протекают в значительной степени параллельно-последовательно, взаимосвязано и взаимозависимо. Степень взаимодействия этих процессов определяется появлением и скоростью конструирования новых частиц, супермолекул, супрамолекулярных образований, блоков, фрагментов, разнообразием генов, геномов по технологии LEGO.

Представлены общие механизмы /алгоритм/ самоорганизации костного и живого. Автоконструирование частиц, супермолекул, супрамолекулярных ассоциаций, стромы, функциональных частей клетки /органелл, мембраны/ и генома по технологии конструктора LEGO объясняет происхождение и эволюцию живого именно на планете Земля. Живое с помощью КЭПНК по технологии LEGO может собираться за короткий отрезок времени как на планетах Солнечной системы, так и экзопланетах. Это не отрицает возможность панспермии, в том числе и на планеты Солнечной системы.

Технологии конструктора LEGO дают ответы на следующие вопросы: «почему отсутствуют промежуточные формы (в палеонтологии существуют только отчётливо идентифицированные виды), почему эволюция идёт в сторону всё большего усложнения более совершенных представителей, почему возникают системы «не упрощаемой сложности»»,... «почему эволюция имеет вектор, направленный в сторону более высокой организованности вещества» (Галимов Э.М., 2009, с. 22-27).

В Космосе самоорганизация костного и живого происходит по технологии конструктора LEGO, а тиражирование самоподобных разно размерных объектов по технологии матрицы (Соков, 2010; 2012; 2013).

Итак, элементарные частицы (кварки, лептоны и промежуточные векторные бозоны): электроны — протоны — нейтроны /КЭПНК, троичный код и триплетный генетический код, оснащены технологией конструктораLEGO/ \leftrightarrow ядра \rightarrow ионы \rightarrow атомы /изотопы химических элементов \leftrightarrow суперматрица/ \rightarrow молекулы \rightarrow супермолекулы \rightarrow супрамолекулярные ассоциации \rightarrow симбиогенез /органеллы/, геном /матрица/ \leftrightarrow клетка \rightarrow многоклеточный организм \rightarrow объект \rightarrow структура \rightarrow свойство \rightarrow явление \rightarrow функция.

Литература.

- 1. Аблесимов, Н.Е. Сколько химий на свете? «Химия и жизнь» №5, 6, 2009; http://elementy.ru/lib/431005
- 2. <u>Альберт, А. Избирательная токсичность.</u> <u>Физико-химические основы терапии : монография в 2 т. / А. Альберт, пер. с англ. М. : Медицина, 1953; 1989. Т. 1. 400 с. Т. 2. 432 с.</u>
- 3. Бучаченко, А.Л. Химия это музыка природы //Вестник Российской академии наук, 2001. Том 71, №6, с. 544-549
- 4. Галимов, Э.М. Феномен жизни: Между равновесием и нелинейностью. Происхождение и принципы эволюции. Изд. 3, стереот. М.: URSS, (2001; 2008) 2009. 256 с.
- 5. Келина, Н. Ю., Безручко, Н. В. Токсикология в таблицах и схемах. Ростов н/Д.: Феникс, 2006. 146 с.
- 6. Лен, Ж.-М. Супрамолекулярная химия. Концепции и перспективы. Новосибирск: Наука. Сибирское предприятие РАН, 1998. 333 с.
- 7. Ленинджер, А. Биохимия (молекулярные основы структуры и функции клетки). М.: Мир, 1974. 960 с.
- 8. Линде, А.Д. (профессор Стэндфордского университета, США) Многоликая Вселенная, Москва, ФИАН, лекция 10 июня 2007

- года. Режим доступа http://elementy.ru/images/lections/Linde_lection_10.06.2007.jpg
- 9. Маргелис, Л. Роль симбиоза в эволюции клетки. М.: Мир, 1983. 352 с.
- 10. Марков, А.В. Горизонтальный перенос генов и эволюция / А.В. Марков // Доклад в Институте Общей Генетики, 13 ноября 2008 г, 2008; http://www.evolbiol.ru/lgt2008/lgt2008.htm
- 11. Соков, Л.А. Главная последовательность дифференциации первичного космического вещества // Синергетика природных, технических и социально-экономических систем: сб. статей V Международной научно-технической конференции (май, ноябрь 2008). —Тольятти: Изд-во ПВГУС, 2008. С. 7-16.
- 12. Соков, Л.А. Самоорганизация и последующая эволюция живого вещества во Вселенной одно из свойств барионной материи / Л.А. Соков // Синергетика природных, технических и социально-экономических систем: сб. статей VI Международной научно-технической конференции (май 2009). Тольятти: Изд-во ПВГУС, 2009. (С. 6–20) 154 с.
- 13. Соков, Л.А. Матрица! / Л.А. Соков // Синергетика природных, технических и социально-экономических систем : сб. статей VIII Международной научной конференции. Тольятти : Изд-во ПВГУС, 2010. (С. 7-19) 284 с.
- 14. Соков, Л.А. Происхождение жизни. Мультиматрица (from stardust to men) :монография. Изд. 2-е / Л.А. Соков. Челябинск : Изд-во «Челябинская государственная медицинская академия», 2012. 412 с.
- 15. Соков, Л.А. Принцип матрицы. Матрица, матрицирование, фракталы / Л.А. Соков // Синергетика природных, технических и социально-экономических систем : сб. статей XI Международной научной конференции.— Тольятти : Изд-во ПВГУС, 2013. (С. 29-35) 260 с.

- 16. Федосин, С.Г. Основы синкретики. Философия носителей. М: Эдиториал УРСС, 2003. 464 с. Федосин, С.Г. Носители жизни: происхождение и эволюция. С.-Петербург, Изд-во «Дмитрий Буланин», 2007. 104 с. Федосин, С.Г. Физические теории и бесконечная вложенность материи. Пермь, 2009. 844 с. http://traditio-ru.org/wiki/Бесконечная вложенность материи
- 17. Хьюз, М. Неорганическая химия биологических процессов : монография / М. Хьюз. М. : Мир, 1983. 414 с.
- 18. Щукарев, С.А. Неорганическая химия / С.А. Щукарев // Учебное пособие для хим. факультетов ун-тов. М. : Высшая школа, 1970 (1974). Т. 1. 353 с.
- 19. Baryshev, Y. Teerikorpi, P. The Discovery of Cosmic Fractals World Scientific Press, London-Singapore, 2002. Baryshev, Y. Field fractal cosmological model as an example of practical cosmology approach. Practical Cosmology, 2008, Vol. 2, P. 60-67.
- YonggangKe, Luvena L. Ong, William M. Shih, Peng Yin. Three-Dimensional Structures Self-Assembled from DNA Bricks // Science. 2012. V. 338. P. 1177–1183.
- 21. Kurt V. Gothelf. LEGO-like DNA Structures // Science. 2012. V. 338. P. 1159–1160 синопсис к предыдущей статье.
- 22. Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns // Nature. 2006. V. 440. P. 297–302.
- 23. Hao Yan et al. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires // Science. 2003. V. 301. P. 1882–1884.
- 24. Peng Yin et al. Programming DNA Tube Circumferences // Science. 2008. V. 321. P. 824–826.

Резюме. Тиражирование разнообразных разно размерных самоподобных объектов Вселенной осуществляется с помощью технологии матрицы, самосборка различных структур, систем происходит КЭПНК по технологии конструктора LEGO.

Summary. Duplication of various different dimensions of self-similar objects in the universe by using matrix technology, self-assembly of different structures, systems is CEPNC technology space the constructor LEGO.

© Соков, Л.А., 2013

сайт автора http://levsokov.narod.ru/biography/
http://levsokov.narod.ru/monografiya/